11 research outputs found

    Quantitative Modeling and Verification of Evolving Software

    Get PDF
    Mit der steigenden Nachfrage nach Innovationen spielt Software in verschiedenenWirtschaftsbereichen eine wichtige Rolle, wie z.B. in der Automobilindustrie, bei intelligenten Systemen als auch bei Kommunikationssystemen. Daher ist die Qualität für die Softwareentwicklung von großer Bedeutung. Allerdings ändern sich die probabilistische Modelle (die Qualitätsbewertungsmodelle) angesichts der dynamischen Natur moderner Softwaresysteme. Dies führt dazu, dass ihre Übergangswahrscheinlichkeiten im Laufe der Zeit schwanken, welches zu erheblichen Problemen führt. Dahingehend werden probabilistische Modelle im Hinblick auf ihre Laufzeit kontinuierlich aktualisiert. Eine fortdauernde Neubewertung komplexer Wahrscheinlichkeitsmodelle ist jedoch teuer. In letzter Zeit haben sich inkrementelle Ansätze als vielversprechend für die Verifikation von adaptiven Systemen erwiesen. Trotzdem wurden bei der Bewertung struktureller Änderungen im Modell noch keine wesentlichen Verbesserungen erzielt. Wahrscheinlichkeitssysteme werden als Automaten modelliert, wie bei Markov-Modellen. Solche Modelle können in Matrixform dargestellt werden, um die Gleichungen basierend auf Zuständen und Übergangswahrscheinlichkeiten zu lösen. Laufzeitmodelle wie Matrizen sind nicht signifikant, um die Auswirkungen von Modellveränderungen erkennen zu können. In dieser Arbeit wird ein Framework unter Verwendung stochastischer Bäume mit regulären Ausdrücken entwickelt, welches modular aufgebaut ist und eine aktionshaltige sowie probabilistische Logik im Kontext der Modellprüfung aufweist. Ein solches modulares Framework ermöglicht dem Menschen die Entwicklung der Änderungsoperationen für die inkrementelle Berechnung lokaler Änderungen, die im Modell auftreten können. Darüber hinaus werden probabilistische Änderungsmuster beschrieben, um eine effiziente inkrementelle Verifizierung, unter Verwendung von Bäumen mit regulären Ausdrücken, anwenden zu können. Durch die Bewertung der Ergebnisse wird der Vorgang abgeschlossen.Software plays an innovative role in many different domains, such as car industry, autonomous and smart systems, and communication. Hence, the quality of the software is of utmost importance and needs to be properly addressed during software evolution. Several approaches have been developed to evaluate systems’ quality attributes, such as reliability, safety, and performance of software. Due to the dynamic nature of modern software systems, probabilistic models representing the quality of the software and their transition probabilities change over time and fluctuate, leading to a significant problem that needs to be solved to obtain correct evaluation results of quantitative properties. Probabilistic models need to be continually updated at run-time to solve this issue. However, continuous re-evaluation of complex probabilistic models is expensive. Recently, incremental approaches have been found to be promising for the verification of evolving and self-adaptive systems. Nevertheless, substantial improvements have not yet been achieved for evaluating structural changes in the model. Probabilistic systems are usually represented in a matrix form to solve the equations based on states and transition probabilities. On the other side, evolutionary changes can create various effects on theese models and force them to re-verify the whole system. Run-time models, such as matrices or graph representations, lack the expressiveness to identify the change effect on the model. In this thesis, we develop a framework using stochastic regular expression trees, which are modular, with action-based probabilistic logic in the model checking context. Such a modular framework enables us to develop change operations for the incremental computation of local changes that can occur in the model. Furthermore, we describe probabilistic change patterns to apply efficient incremental quantitative verification using stochastic regular expression trees and evaluate our results

    Specification, Validation and Verification of Social, Legal, Ethical, Empathetic and Cultural Requirements for Autonomous Agents

    Get PDF
    Autonomous agents are increasingly being proposed for use in healthcare, assistive care, education, and other applications governed by complex human-centric norms. To ensure compliance with these norms, the rules they induce need to be unambiguously defined, checked for consistency, and used to verify the agent. In this paper, we introduce a framework for formal specification, validation and verification of social, legal, ethical, empathetic and cultural (SLEEC) rules for autonomous agents. Our framework comprises: (i) a language for specifying SLEEC rules and rule defeaters (that is, circumstances in which a rule does not apply or an alternative form of the rule is required); (ii) a formal semantics (defined in the process algebra tock-CSP) for the language; and (iii) methods for detecting conflicts and redundancy within a set of rules, and for verifying the compliance of an autonomous agent with such rules. We show the applicability of our framework for two autonomous agents from different domains: a firefighter UAV, and an assistive-dressing robot

    Closed-loop Analysis of Vision-based Autonomous Systems : A Case Study

    Get PDF
    Deep neural networks (DNNs) are increasingly used in safety-critical autonomous systems as perception components processing high-dimensional image data. Formal analysis of these systems is particularly challenging due to the complexity of the perception DNNs, the sensors (cameras), and the environment conditions. We present a case study applying formal probabilistic analysis techniques to an experimental autonomous system that guides airplanes on taxiways using a perception DNN. We address the above challenges by replacing the camera and the network with a compact probabilistic abstraction built from the confusion matrices computed for the DNN on a representative image data set. We also show how to leverage local, DNN-specific analyses as run-time guards to increase the safety of the overall system. Our findings are applicable to other autonomous systems that use complex DNNs for perception

    Quantitative Verification of Stochastic Regular Expressions

    No full text
    WOS:000629178200004In this article, we introduce a probabilistic verification algorithm for stochastic regular expressions over a probabilistic extension of the Action based Computation Tree Logic (ACTL*). The main results include a novel model checking algorithm and a semantics on the probabilistic action logic for stochastic regular expressions (SREs). Specific to our model checking algorithm is that SREs are defined via local probabilistic functions. Such functions are beneficial since they enable to verify properties locally for sub-components. This ability provides a flexibility to reuse the local results for the global verification of the system; hence, the framework can be used for iterative verification. We demonstrate how to model a system with an SRE and how to verify it with the probabilistic action based logic and present a preliminary performance evaluation with respect to the execution time of the reachability algorithm

    Resilient strategies for socially compliant autonomous assistive dressing robots

    No full text
    Developing resilient autonomous systems requires an interdisciplinary approach that can understand performance variability and respond to critical events when they occur. Resilience within autonomous systems must also account for social norms as well as broader ethical and legal considerations. Within this paper we outline the importance of embedding Social, Legal, Ethical, Empathetic and Cultural (SLEEC) constraints within the development of future autonomous systems. A novel methodological approach is presented that combines Human Factors methods with Computer Science techniques to generate the environmental and situational requirements in combination with a computer rule-based requirements language. This approach also provides a possible structure for capturing contextual and situational information from key stakeholders in the development of autonomous systems. This structure will enable engagement with the stakeholders with respect to key elements identified from this interdisciplinary approach in a responsible way to ensure that future autonomous systems are user centred. The approach is domain independent, but it is applied here to the case of an autonomous assistive dressing robot that aids a user in a dressing task, with a specific critical event that requires a SLEEC resilient response

    Predicting Nonfunctional Requirement Violations in Autonomous Systems

    No full text
    Autonomous systems are often used in applications where environmental and internal changes may lead to requirement violations. Adapting to these changes proactively, i.e., before the violations occur, is preferable to recovering from the failures that may be caused by such violations. However, proactive adaptation needs methods for predicting requirement violations timely, accurately and with acceptable overheads. To address this need, we present a method that allows autonomous systems to predict violations of performance, dependability and other nonfunctional requirements, and therefore take preventative measures to avoid or otherwise mitigate them. Our method for predicting these autonomous system disruptions (PRESTO) comprises a design time stage and a run-time stage. At design-time, we use parametric model checking to obtain algebraic expressions that formalise the relationships between the nonfunctional properties of the requirements of interest (e.g., reliability, response time and energy use) and the parameters of the system and its environment. At run-time, we predict future changes in these parameters by applying piece-wise linear regression to online data obtained through monitoring, and we use the algebraic expressions to predict the impact of these changes on the system requirements. We demonstrate the application of PRESTO through simulation in case studies from two different domains

    Specification, Validation and Verification of Social, Legal, Ethical, Empathetic and Cultural Requirements for Autonomous Agents

    Full text link
    Autonomous agents are increasingly being proposed for use in healthcare, assistive care, education, and other applications governed by complex human-centric norms. To ensure compliance with these norms, the rules they induce need to be unambiguously defined, checked for consistency, and used to verify the agent. In this paper, we introduce a framework for formal specification, validation and verification of social, legal, ethical, empathetic and cultural (SLEEC) rules for autonomous agents. Our framework comprises: (i) a language for specifying SLEEC rules and rule defeaters (that is, circumstances in which a rule does not apply or an alternative form of the rule is required); (ii) a formal semantics (defined in the process algebra tock-CSP) for the language; and (iii) methods for detecting conflicts and redundancy within a set of rules, and for verifying the compliance of an autonomous agent with such rules. We show the applicability of our framework for two autonomous agents from different domains: a firefighter UAV, and an assistive-dressing robot
    corecore